Govt Polytechnic, Nilokheri Electrical Engineering Department Lesson plan

Name of Faculty	Sh. Sanjeev Kumar	
Discipline	Electrical Engineering	
Semester	3 rd	
Subject	Electronics-II	
Lesson Plan Duration	From July2018 to Nov2018	
Work load (Theory + Practical) Per Week	[03 + 03] Group1&2	

Work load (Theory + Practical) Per Week [03 + 03] Group1&2				
Week	Day	Theory Topic/ Assignment/ Test	No.	Practical
	1	Unit:1 Transistor Audio Power Amplifier		To study the effect of coupling
1 st	2	Difference between voltage and power	1	capacitor on lower cut off
		amplifier		frequency and upper cut off
	3	Terms in Power Amplifier, collector efficiency,		frequency by plotting frequency
		distortion and dissipation capability		response curve of a two stage RC
	1	Classification of power amplifier class A, B and		coupled amplifier
2 nd		С		
		Class A single-ended power amplifier, its		
	2	working and collector efficiency Impedance	2	To measure (a) optimum load (b)
		matching in a power amplifier using		output power (c) signal handling
-		transformer		capacity of a push-pull amplifier
	3	Heat sinks in power amplifiers, Push-pull		
		amplifier: circuit details working and		
		advantages		
	1	Principles of the working of complementary	_	To measure (a) voltage gain (b)
3 rd		symmetry push-pull amplifier	3	input and output impedance for
	2	Revision/Assignment of 1st unit		an emitter follower circuit
	3	Class test of 1st unit		
4 th	1	Unit-2 Introduction to tuned voltage amplifier		
	2	Series and parallel resonance, Single and	4	Practical Quiz No.2/ Revision and
		double tuned voltage amplifiers	_	file checking
	3	Frequency response of tuned voltage		
		amplifiers,Applications of tuned voltage		
	1	amplifiers Revision/Assignment of 2 nd unit		To measure frequency generation
5 th	2	Class test of 2 nd unit	5	in (a) Hartley (b) R-C Phase Shift
,	3	Unit3: Feedback in Amplifiers positive and		oscillator
	3	negative feedback and their need		Oscillator
	1	Voltage gain of an amplifier with negative		
6 th	-	feedback A = A/1+βA	6	Practical Quiz No.3/ Revision and
	2	Effect of negative feedback on voltage gain,		file checking
	_	stability, distortion, band width		
	3	Output and input impedance of an amplifier		
7 th	1	Typical feedback circuits	7	To observe the differentiated and
	2	Effect of removing the emitter by-pass		integrated square wave on a CRO
		capacitor on a CE transistor amplifier		for different values of R-C time
	3	Emitter follower and its applications		constant
	1	Revision/Assignment of 3 rd unit		
8 th	2	Unit4: Sinusoidal oscillators amplifier positive	1	Clipping of both portion of sine-

		feedback		wave using: diode and dc source/
	3	Difference between an oscillator and an alternator	8	Zener diodes
	1	Essentials of an oscillator, Circuit details and working of LC oscillators	9	Clamping a sine-wave to: Negative
9 th	2	Tuned Collector, Hartley		dc voltage Positive dc voltage
	3	and Colpitt's oscillators, R-C oscillator circuits		
	1	phase shift and Wein bridge oscillator circuits		Practical Quiz No.3/ Revision and
10 th	2	Introduction to piezoelectric crystal and crystal oscillator circuit	10	file checking
	3	Revision/Assignment of 4 th unit		
	1	Wave-Shaping and Switching Circuits		To generate square-wave using an
11th	2	Concept of Wave-shaping circuits	11	astable multivibrator and to
	3	R-C differentiating and integrating circuits		observe the wave form on a CRO
	1	Diode clipping circuits, Diode clamping circuits		To observe triggering and working
12 th	2	Applications of wave-shaping circuits, Transistor as a switch	12	of a bistable multivibrator circuit and observe its output wave form
	3	Collector coupled astable, monostable, Bistable multivibrator circuits		on a CRO
	1	Working and applications of transistor inverter circuit using power transistors	13	Practical Quiz No.3/ Revision and
13 th	2	Revision/Assignment of 5th unit		file checking
	3	Unit6: Working Principles of different types of power supplies viz. CVTs		
	1	IC voltage regulators(78xx,79xx)		Op-Amp (IC 741) as inverting and
14	2	Revision/Assignment of 6th unit	14	non-inverting amplifier, adder
	3	Unit7: Operational Amplifier, differential amplifier		Comparator, integrator and differ -entiator verify using p-spice
15 th	1	Emitter coupled differential amplifier Offset even voltages and currents	15	To study the pin configuration and working of IC 555 and its use as
	2	Integrator and differentiator, Summer, Subtractor		mono stable and astable multi - vibrator
	3	Familiarization with specifications and pin configuration of IC 741		
	1	Block diagram and operation of 555 IC timer		Internal Practical/viva-voice
16 th	2	HSBTE old paper solution	16	evaluation
	3	HSBTE old paper solution		